Hbmo in Optimal Reservoir Operation

نویسندگان

  • Omid Bozorg Haddad
  • Abbas Afshar
  • Barry J. Adams
چکیده

The broad of applicability, ease of use, and global perspective of so-called meta-heuristic algorithms may be considered as the primary reason for their extensive application and success as search and optimization tools in various problem domains. Honey bees are among the most well-studied social insects. Their mating process may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of real honey bees mating. This paper presents a honey bee mating optimization algorithm (HBMO) to solve a real world continuous optimization problem. To do so, a single reservoir with 60 operation period is considered. A fitness function is defined as the total square deviation from target demand. Releases from the reservoir are considered as decision variables, resulting in reservoir storage as continuous state variable. Employing one queen with 130 drones and 1000 mating flights, the model converged to a near global optimum. Results obtained from 10 different runs are quite promising emphasizing the capability of the developed algorithm in handling constrained-continuous engineering optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...

متن کامل

Developing Self-adaptive Melody Search Algorithm for Optimal Operation of Multi-reservoir Systems

Operation of multi-reservoir systems is known as complicated and often large-scale optimization problems. The problems, because of broad search space, nonlinear relationships, correlation of several variables, as well as problem uncertainty, are difficult requiring powerful algorithms with specific capabilities to be solved. In the present study a Self-adaptive version of Melody Search algorith...

متن کامل

Hbmo in Engineering Optimization

Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Their broad applicability, ease of use, and global perspective may be considered as the primary reason for their success. Honey bees mating process may also be considered as a typical swarm-based ap...

متن کامل

الگوریتم بهینه یابی جفت گیری زنبورهای عسل ( HBMO ) در حل مسائل بهینه سازی

 Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Ease of use and broad applicability may be considered as the primary reasons for their success. The honey-bee mating process has been considered as a typical swarm-based approach to optimization, i...

متن کامل

Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir

In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007